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Abstract
It is generally assumed that the study of the spectrum of the linearized Navier–
Stokes equations around a static state will provide information about the stability
of the equilibrium. This is obvious for inviscid barotropic compressible fluids
by the self-adjoint character of the relevant operator, and rather easy for viscous
incompressible fluids by the compact character of the resolvent. The viscous
compressible linearized system, both for periodic and homogeneous Dirichlet
boundary problems, satisfies neither condition, but it does turn out to be
the generator of an immediately continuous, almost stable semigroup, which
justifies the analysis of the spectrum as predictive of the initial behaviour
of the flow. As for the spectrum itself, except for a unique negative finite
accumulation point, it is formed by eigenvalues with negative real part, and
nonreal eigenvalues are confined to a certain bounded subset of complex
numbers.

PACS numbers: 47.40.-x, 02.20.-a, 02.30.-f, 05.45.-a, 47.65.+a

1. Introduction

It is widely believed that the initial evolution of a system governed by a nonlinear differential
equation

dw

dt
= A(w) (1)

for initial conditions w(0) = w0 + x0 near an equilibrium state w0 may be approximated for
small t and x0 by w(t) ∼ w0 + x(t), where x(t) is the solution of the linearized system

dx

dt
= A′(w0)x

x(0) = x0.
(2)

This linear system may still be too complex to find general solutions, so one studies simpler
problems such as instability: will some solutions grow exponentially in time? This question
has an immediate spectral sound to it, so it is confidently assumed that if all the spectral points
of A′(w0) have negative real part, the system will be stable.
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There are too many implicit assumptions here. To begin with: (a) for the true solutions
to be near the linear ones for small t , the nonlinear semigroup w0 → w(t) must be well
defined and differentiable for small t ; (b) for the linear evolution to make sense, A′(w0) must
be the generator of a semigroup t → T (t), preferably strongly continuous (also called a
C0-semigroup), which is by no means obvious.

(c) In addition, to know the spectrum of A′(w0) it is not enough to study the spectrum of
T (t), which is all one really would like to need. It is true that

etσ (A
′(w0)) ⊂ σ(T (t)) − {0} (3)

but the equality does not hold in general: there could be spectral points in T (t) not related
to any of A′(w0). The inclusion above is an identity for the point spectrum (and therefore
for compact T (t) there are no problems) and, of course, both sets coincide if A′(w0) is self-
adjoint (or normal). When neither occurs, there is still some hope: if T (t) is eventually
norm-continuous (the mapping t → T (t) is continuous from [t0,∞) to L(E) for some t0 > 0
see [1, p 112]), the spectral identity (3) holds.

(d) Even in the case that certain eigensolutions behave in time as eλt does not give
enough information for other initial conditions. When A′(w0) is self-adjoint, or normal, this
information is provided with every desired precision by the spectral decomposition theorem.
If not, the best alternative occurs when the semigroup is almost-stable [2,3]. This means that:

(1) The norm of T (t) in L(E) is bounded in [0, T ] by a constant depending only on T .
(2) For a certain dense set in the dual spaceG ⊂ E′, the mapping t → 〈T (t)v, φ〉 is continuous

in [0,∞) for any v ∈ E, φ ∈ G.
(3) There exists a value ρ ∈ (0, 1) such that the spectrum of T (1) does not cut the circle

|z| = ρ, and there is a finite number of eigenvalues of finite multiplicity in |z| > ρ.

Condition (1) is automatic for strongly continuous semigroups, and (2) is usually pretty
easy to prove: one takes the domain of the transposed operator D(A′(w0)

t ), or any dense
space of smooth functions, for G. Condition (3), however, needs to be addressed. It holds, for
instance, if σ(T (1)) is contained in a ball centred at 0 of radius less than 1.

If the semigroup is almost-stable, for any ρ such that the spectrum σ(T (1)) does not cut
|z| = ρ, there exists a decomposition of the underlying function space E in two subspaces E+,
E−, invariant by T (t), and norms ‖ ‖± in E±, such that for certain positive ε±

‖T (t)|E−‖ � (ρ − ε−)t

‖T (t)−1|E+‖ � (ρ + ε+)
−t .

(4)

The norm ‖u‖′ = ‖u+ + u−‖′ = sup(‖u+‖, ‖u−‖) is equivalent to the original norm in E.
This decomposition of the space in solutions (roughly) decreasing like ρt and growing like
ρ−t is the best one can do to mimic the spectral theorem. In particular, if the spectrum of T (1)
is contained in a ball centred at 0 of radius less than 1, every solution will be exponentially
decreasing in time.

In fact the study of the growth of solutions of evolutionary equations associated to non-
normal operators has a long history. It has been readily recognized that for such operators
the norm of the resolvent ‖(A − z)−1‖ could be small for points z far from the spectrum,
exhibiting the so-called pseudoresonance (see [4] and references therein). That the spectrum
of the operator A does not determine the size of the semigroup operator etA for t large is well
known [5] and alternatives have been found [4]. Note, however, that property (d) is finer than a
mere study of the growth of ‖T (t)‖, because it deals with the growth of ‖T (t)u0‖ for generic
initial conditions u0.

Let us turn to concrete examples. Newtonian fluids are governed by the Navier–
Stokes equations, and if they are conducting and a magnetic field is present, by the
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magnetohydrodynamics (MHD) equations. All fluids are more or less viscous and all plasmas
posses some resistivity, but if one is justified in neglecting viscosity one obtains the inviscid
or Euler equations. Their linearization around a static equilibrium state is called the linear
acoustics system, and as we will see, it is associated to a normal A′(w0) (in fact iA′(w0) is self-
adjoint for a certain internal product). Hence problems (b)–(d) are solved in a stroke and one
may study deeper questions, such as scattering [6, pp 129–142]. Viscous, but incompressible
fluids are also good: the semigroup is compact and hence almost-stable, and the semigroup
is differentiable, so (a)–(d) hold [7]. MHD equilibria are much more complicated, and it is
difficult to find some without certain symmetries [8, 9]. If both viscosity and resistivity are
omitted (ideal MHD), (b) is true but not trivial [10]: the system may be cast in a second-
order self-adjoint form [11], but the spectrum is enlarged with irrelevant points. Still, there
is a sizable literature on the subject, motivated by its applications to the theory of magnetic
plasma confinement. If the plasma is viscous, resistive and incompressible, properties (a)–
(d) essentially hold [7], because the nonlinear semigroup (defined only up to some time for
dimension three) is again compact and differentiable.

Viscous, compressible fluids get the worst of both worlds: on the one hand, the viscosity
term for the velocity makes the semigroup generator non self-adjoint; on the other, the lack of
a dissipative term in the continuity equation makes the resolvent noncompact. We intend to
show here that nonetheless properties (b)–(d) still hold, and obtain additional information on
the spectrum. It will be found that its spatial distribution for the periodic case, which is a rather
easy victim of the Fourier transform, remains essentially similar for the Dirichlet problem: the
spectrum of the semigroup generator lies in some half-plane Re z < −δ < 0; there is only a
finite accumulation point, plus −∞; all the remaining spectral points are eigenvalues of finite
multiplicity, and the nonreal ones are confined to a bounded subset of C. Condition (a) depends
on the existence and properties of smooth solutions of the nonlinear system up to some time
and will not be addressed here.

A more difficult question would be the study of nonstatic equilibria, an important and
much-studied topic [12]. Naturally these equilibria require the presence of a forcing term.

Finally, let us note that all norms throughout the paper will be L2-ones and we will drop
any subscripts on them for ease of notation.

2. The mathematical setting

The Navier–Stokes equations for a compressible barotropic fluid without external forcing are

∂ρ

∂t
= −div(ρu)

ρ
∂u

∂t
= ν�u + ξ∇(divu) − ∇p − ρu · ∇u

(5)

where u is the fluid velocity, ρ the density, ν the viscosity, ξ another constant with ν + ξ > 0,
and p the kinetic pressure. For simplicity we will assume ξ = 0; this only simplifies somewhat
the expressions and has no bearing on the behaviour of the operator, which is dominated by
the Laplacian. The relation between p and ρ is given by an independent state equation. As
stated, we will assume that we are dealing with a barotropic fluid, i.e. p = p(ρ), where p

is a strictly increasing function of ρ: for many physical cases, p is a power of ρ, p = Cργ .
Boundary conditions must be added depending on the situation we are considering. A static
equilibrium is given by u = 0, ∂/∂t = 0; the continuity equation vanishes identically, and the
momentum one yields ∇p = 0, which in a connected domain ! means constant pressure, i.e.
constant density. To avoid the trailing of constants, we will take this constant density as 1, and



4344 M Núñez

set b = p′(1) > 0. Now let ρ,u denote not the original magnitudes, but small perturbations of
them. Note that while the density is positive, ρ may be positive or negative (although always
less than 1), but since the total mass is not allowed to change,

∫
!
ρ dV = 0. The linearized

equations around this equilibrium become
∂ρ

∂t
= −div u

ρ
∂u

∂t
= ν�u − b∇ρ.

(6)

Hence the relevant semigroup, if any, must be generated by the operator

A

(
ρ

u

)
=
( −div u

ν�u − b∇ρ

)
.

The spaces where A is defined depend on the problem. We will first deal with the case where !
is a periodic box. Then we take for notational simplicity ! = (0, 2π)N , where N is the space
dimension. Let

H =
{
(ρ,u) ∈ L2(!)N+1 :

∫
!

ρ dV = 0,
∫
!

u dV = 0
}

D(A) =
{
(ρ,u) ∈ L2(!) × H 1(!)N :∫

!

ρ dV = 0,
∫
!

u dV = 0,u periodic, ν�u − b∇ρ ∈ L2(!)N
}
.

(7)

The periodicity condition makes sense because in H 1(!) the traces at the boundary are well
defined. In fact, if we just assume that u ∈ L2(!)N , and div u (in the sense of distributions)
lies within L2(!)N , the normal component u · n makes sense [13, pp 237–251]. The value
ν�u − b∇ρ is to be understood in the sense of distributions. Note that since the divergence
of any periodic function within H 1 has zero mean, A takes D(A) into H . The space of the
velocities u satisfying the conditions of D(A) is often denoted by H 1

per(!), and its dual by
H−1

per (!).
For the Dirichlet problem in a smooth domain !, the main spaces will be

H =
{
(ρ,u) ∈ L2(!)N+1 :

∫
!

ρ dV = 0

}

D(A) =
{
(ρ,u) ∈ L2(!) × H 1

0 (!)N :
∫
!

ρ dV = 0, ν�u − b∇ρ ∈ L2(!)N
}
.

(8)

Note that since ∇ρ does not need to belong toL2(!)N , then (ρ,u) ∈ D(A)does not necessarily
imply u ∈ H 2(!)N .

Let us see that A is a closed operator. If (ρn,un) → (ρ,u) in H , (−div un, ν�un −
b∇ρn) → (f, g) in H , b∇ρn +g tends to b∇ρ +g in, respectively, H−1

per (!), H−1(!). Since �
is an isomorphism, � : H 1

per(!) → H−1
per (!) in the periodic case, � : H 1

0 (!) → H−1(!) in
the Dirichlet case, un tends to u not only in L2(!)N , but also in H 1(!)N . Thus div un tends
to div u = f in L2(!), and since ν�u − b∇ρ = g ∈ L2(!)N , (ρ,u) ∈ D(A).

3. The periodic problem

Recall that the Fourier transform takes H to

Ĥ =
{
(ρk,uk)k∈ZN : ρ0 = 0,u0 = 0,

∑
k

|ρk|2 < ∞,
∑

k

|uk|2 < ∞
}

whereas, if u ∈ H 1
per(!)N , then

∑
k2|uk|2 is also less than ∞.
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Theorem 3.1. The eigenvalues of A are the following ones:

{−νk2, k = 1, 2, . . .}
{ 1

2 (−νk2 − (ν2k4 − 4bk2)1/2), k = 1, 2, . . .}
{ 1

2 (−νk2 + (ν2k4 − 4bk2)1/2), k = 1, 2, . . .}.
They have finite multiplicity. The first and second families accumulate at −∞ when k → ∞,
whereas the third one tends to −b/ν. All of them have negative real parts, and only a finite
number are not real.

Proof. The Fourier transform diagonalizesA. Explicitly, the action of F−1AF upon a sequence
(ρk,uk) takes its kth component to

Ak

(
ρk

u1,k

u2,k

)
=
( 0 −ik1 −ik2

−ibk1 −νk2 0
−ibk2 0 −νk2

)(
ρk

u1,k

u2,k

)

where for simplicity we have taken N = 2; the form of the matrix for dimension N follows
the same scheme. The eigenvalues of Ak are −νk2, with multiplicity N − 2 in the general
case, and (1/2)(−νk2 ± (ν2k4 − 4bk2)1/2); they depend only of the value k2. The properties
of the families previously stated are simple calculations. �

Remark 1. All the nonreal eigenvalues lie within the curve y2 = x2 + (2b/ν)x,−2b/ν <

x < 0.

Remark 2. The eigenvalues accumulating at −∞ have an order −νk2, and correspond to
eigenvectors where ρk behaves like ik · uk/k

2, so that |ρk| � |uk| when k → ∞. In a sense
they are associated to incompressible oscillations of the velocity, which agrees with the fact that
they are also present in the incompressible case. However, for the eigenvalues accumulating
at −b/ν, the eigenvectors satisfy uk ∼ ikbρ/k2, so that |uk| � |ρk|: they correspond to
density oscillations without perturbation of the velocity. This is illuminating in a number of
ways: for the incompressible case there are no finite accumulation points, which is natural in
view of the above description; the fact that not all the spectrum is discrete means that T (t) is
not compact for any t . The full nonlinear Navier–Stokes equations present existence problems
because of the noncompactness of certain approximate families of solutions, which is related
to the phenomenon of persistent density oscillations, even for vanishing velocity [14, p 10].
We see that the linear approach already hints at some of the problems of the nonlinear theory.

Theorem 3.2. The spectrum of A is formed by its eigenvalues plus the point −b/ν.

Proof. We will calculate the inverse of Ak − λ when λ is not an eigenvalue. Let

Qk(λ) = − det(Ak − λ) = (λ2 + νλk2 + bk2)(λ + νk2)

= (λ − 1
2 [−νk2 − (ν2k4 − 4bk2)1/2])

×(λ − 1
2 [−νk2 + (ν2k4 − 4bk2)1/2])(λ + νk2).

Then (Ak − λ)−1 is

1

Qk(λ)

( −(λ + νk2)2 ik1(λ + νk2) ik2(λ + νk2)

ibk1(λ + νk2) −(λ2 + (λν + b)k2 − bk2
1) bk1k2

ibk2(λ + νk2) bk1k2 −(λ2 + (λν + b)k2 − bk2
2)

)

and the analogous matrix for dimension N . For λ at a positive distance from the set of
eigenvalues, all the terms are uniformly bounded in k. In fact, for k large, after bounding



4346 M Núñez

below the only possible small factor |λ− (1/2)[−νk2 + (ν2k4 −4bk2)1/2]| > r > 0, we are left
with fractions of order k2/k2, in the (1, 1) position; k2/k4, in the (2, 3) and (3, 2) positions;
and 1/k in the remaining positions. Thus the matrices (Ak − λ)−1 are uniformly bounded in
k and the diagonal operator (F−1AF − λ)−1 is bounded. �

Inspection of (Ak − λ)−1 yields the following corollaries.

Corollary 3.3. For λ > 0, the family (Ak − λ)−1 takes square-summable sequences (ρk,uk)

into sequences (ρ ′
k,u

′
k) with

∑ |ρ ′
k|2 < ∞,

∑
k2|uk|2 < ∞.

Proof. Except for the term (1, 1), all the remaining entries in (Ak − λ)−1 mostly behave like
1/k, and the components of the velocity start at the second coordinate. �

Corollary 3.4. The norms ‖(Ak − ir)−1‖ tend to zero uniformly in k when r → ±∞.

Proof. All the terms satisfy a bound of the form M/|r|, M independent of k. �
The consequences of the above proof are as follows.
Inspection of the spectrum shows that it is located not only in the left half plane (which is

obvious because the operator is dissipative) but also at a positive distance of iR.
Corollary (3.3) guarantees that for λ > 0, (A − λ)−1 takes H into L2(!) × H 1

per(!)N ,
and since the condition upon ν�u − b∇ρ is implicit in the definition of A, Ran(A− λ) = H .
Hence, by Lumer–Phillips’ theorem [1, p 83] and [15], A generates a contraction semigroup,
which takes care of condition (b).

Corollary (3.4) asserts that ‖(A ± ir)−1‖ → 0 when r → ∞, i.e. the semigroup
T (t) is immediately norm-continuous [1, p 115] (continuous in norm for t > 0), so that
σ(T (t))−{0} = etσ (A) [1, p 280], which yields condition (c) as mentioned in the introduction.

Finally, applying the dissipativity of the spectrum and the last remark, we find that σ(T (1))
is located in a ball of radius less than one, so the semigroup is almost-stable and condition (d)
is proved.

4. The Dirichlet problem: general properties

Most of the following arguments work as well for the periodic case, but naturally the Fourier
transform locates the spectrum of A more precisely. We will define in H an internal product,
equivalent to the usual one, but more suited to our particular problem:

〈(ρ1,u1), (ρ2,u2)〉 = b(ρ1, ρ2)L2 + (u1,u2)L2 . (9)

From now on an overbar will denote the complex conjugate.

Proposition 4.1. The operator A is dissipative.

Proof.

〈A(ρ,u), (ρ,u)〉 = −b

∫
!

ρ̄ div u dV +
∫
!

ν�u · ū dV − b

∫
!

∇ρ · ū dV

= −ν

∫
!

|∇u|2 dV + 2ib Im

(∫
!

ρ div ū dV

)
.

Hence

Re (〈A(ρ,u), (ρ,u)〉) = −ν

∫
!

|∇u|2 � 0.
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For the inviscid case, the operator iA becomes self-adjoint for this internal product, which
without further ado takes care of properties (b)–(d). �

Theorem 4.2. For λ > 0 large enough, Ran (A − λ) = H .

Proof. Let (A − λ)(ρ,u) = (ρ1,u1). This means that

−div u − λρ = ρ1

ν�u − b∇ρ − λu = u1.

Formally,

−(b div (ν� − λ)−1∇ + λ)ρ = ρ1 + div (ν� − λ)−1u1

(ν� − λ)u = u1 + b∇ρ.

Let us remember that for any λ > 0, (ν� − λ)−1 is an isomorphism between the following
spaces: H−1(!)N → H 1

0 (!)N , L2(!)N → H 2(!)N ∩ H 1
0 (!)N . Moreover, its norm is

bounded independently of λ when λ → ∞. Now, since both ∇ and div take any space
Hm into Hm−1 in a continuous way, b div (ν� − λ)−1∇ takes Hm into Hm continuously,
with a norm bounded independently of λ. Therefore, for λ larger than this common bound,
b div (ν� − λ)−1∇ + λ is invertible among these spaces. Therefore, if (ρ1,u1) ∈ H , since
the term ρ1 + div (ν� − λ)−1u1 ∈ L2(!), ρ (given by the expression above) also lies
within L2(!). Moreover, the integral of ρ1 is zero, and the divergence of any function
of H 1

0 (such as (ν� − λ)−1u1) also has integral zero; the same happens to ρ. Finally,
u = (ν� − λ)−1(u1 + b∇ρ) belongs to H 1

0 (!)N and ν�u − b∇ρ = λu + u1 ∈ L2(!)N .
Thus the formal expression above really yields an antecedent within D(A) of (ρ1,u1). In
combination with (4.1) and Lumer–Phillips’ theorem, we obtain the following corollary. �

Corollary 4.3. A generates a contraction semigroup.

Proposition 4.4. (A ± ir)−1 tends to zero in L(H) when r → ∞.

Proof. We have∣∣∣∣2b Im

(∫
!

ρ div ū dV

)∣∣∣∣ � 2b ‖div u‖ ‖ρ‖

� bε2 ‖div u‖2 +
b

ε2
‖ρ‖2 � bε2‖∇u‖2 +

b

ε2
‖ρ‖2

for any ε > 0. Take ε2 = ν/2b. Then∣∣∣∣2bIm

(∫
!

ρ div ū

)∣∣∣∣ � ν

2
‖∇u‖2 +

2b2

ν
‖ρ‖2.

Since

〈(A ± ir)(ρ,u), (ρ,u)〉 = −ν

∫
!

|∇u|2 dV + 2ib Im

(∫
!

ρ div ū dV

)
± ir‖(ρ,u)‖2

we have

|〈(A ± ir)(ρ,u), (ρ,u)〉| � | − ν‖∇u‖2 ± ir‖(ρ,u)‖2| −
∣∣∣∣2b Im

(∫
!

ρ div ū dV

)∣∣∣∣
�
(

ν√
2

− ν

2

)
‖∇u‖2 +

r√
2
‖(ρ,u)‖2 − 2b2

ν
‖ρ‖2
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and therefore

‖(A ± ir)(ρ,u)‖ �
(

r√
2

− 2b2

ν

)
‖(ρ,u)‖

which implies the result. �

Corollary 4.5. A generates an immediately continuous semigroup.

Hence, properties (b), (c) hold for A. To see that condition (d) is also true, we need to
show that σ(A) lies in some half-plane to the left of the imaginary axis. This will follow from
a study of the distribution of the spectrum of A, which in view of (c) is interesting in itself.

Corollary 4.6. As an operator of L(L2(!)N+1), (A − λ)−1 is never compact.

Proof. We showed in theorem (4.2) that for λ > 0 large enough, the first component of
(A − λ)−1(ρ1, 0) is ρ = −(b div (ν� − λ)−1∇ + λ)−1ρ1. As stated, div (ν� − λ)−1∇ is a
continuous operator from L2 to L2. The inverse of a continuous operator is never compact
between infinite-dimensional spaces. For other values µ in the resolvent set, since

(A − λ)−1 = [(λ − µ)(A − λ)−1 + I ](A − µ)−1

(A − µ)−1 cannot be compact. �

Note that the weak point in compactness properties is always the presence of a variable
density.

5. The Dirichlet problem: location of the spectrum

Theorem 5.1. 0 /∈ σ(A).

Proof. In the first place, 0 is not an eigenvalue of A: since Re 〈A(ρ,u), (ρ,u)〉 = −ν‖∇u‖2,
A(ρ,u) = (0, 0) would imply that, since u ∈ H 1

0 (!)N , u = 0. Since A(ρ, 0) = (0,−b∇ρ)

and the mean of ρ is zero, ρ is also zero.
Second, 0 does not lie within the residual spectrum of A. In that case it would be an

eigenvalue of A∗. However, A∗ is obtained by changing the sign of the first-order derivatives,
so that if A∗(ρ,u) = (0, 0), A(−ρ,u) = (0, 0).

It remains to see that 0 does not belong to the approximate spectrum ofA. If so, there would
be a sequence (ρn,un) ∈ D(A), with L2-norm one, such that A(ρn,un) → (0, 0) in L2. Since
Re 〈A(ρn,un), (ρn,un)〉 = −ν‖∇un‖2, necessarily un → 0 in H 1

0 . Now take the unique
φn ∈ H 2(!)N ∩ H 1

0 (!)N such that �φn = ρn. There is a constant M such that ‖∇φn‖H 1 �
M‖ρn‖ � M . Since ν�un − b∇ρn → 0 in L2, (ν�un,∇φn) − b(∇ρn,∇φn) → 0.
Now, this product is −(ν∇un,∇(∇φn)) + b(ρn, div ∇φn) → 0. Since ‖∇φn‖H 1 � M ,
‖∇(∇φn)‖L2 � M , and ‖∇un‖L2 → 0, the first term tends to zero. The second is b‖ρn‖2,
which must also tend to zero, contrary to the initial condition. �

Theorem 5.2. Except for the point −b/ν, the spectrum of A is formed by eigenvalues of finite
multiplicity.
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Proof. Let λ �= 0, (A − λ)(ρ,u) = (ρ1,u1). That means

ρ = −1

λ
(div u + ρ1) (10)

and therefore

ν�u +
b

λ
∇div u − λu = u1 − b

λ
∇ρ1. (11)

Let us consider the differential operator Dλ : H 1
0 (!)N → H−1(!)N :

Dλu = ν�u +
b

λ
∇div u. (12)

By substituting ∂i by ξi , we obtain the self-adjoint polynomial matrix (written for simplicity
for N = 2)

νξ 2I +
b

λ

(
ξ 2

1 ξ1ξ2

ξ1ξ2 ξ 2
2

)
= νξ 2I +

b

λ
L. (13)

The eigenvalues ofL are ξ 2 = ξ 2
1 +ξ 2

2 , 0 (ξ 2, 0, . . . , 0 for dimensionN ). Hence the eigenvalues
of the whole matrix are (ν + b/λ)ξ 2, νξ 2, . . . , νξ 2. None of them vanishes for any ξ �= 0
except for λ = −b/ν. Otherwise Dλ is elliptic (strongly elliptic for Re (b/λ) > −ν, i.e.
(Re λ)/(|λ|2) > −ν/b. Thus for λ �= −b/ν the spectrum of Dλ is formed by a countable
number of eigenvalues of finite multiplicity. If λ is one of them, there exists a solution to
Dλu = u, and it lies within H 1

0 (!)N ∩ H 2(!)N . Then the pair (−div u,u) is an eigenvector
for A with eigenvalue λ. On the other hand, if Dλ − λ is invertible, it takes L2(!)N to
H 1

0 (!)N ∩ H 2(!)N continuously. By defining

ρ = −1

λ

(
div (Dλ − λ)−1

(
u1 − b

λ
∇ρ1

)
+ ρ1

)

u = (Dλ − λ)−1

(
u1 − b

λ
∇ρ1

) (14)

we obtain a continuous inverse of A − λ taking H to D(A).
Hence λ is a spectral point of A if and only if λ is an eigenvalue of Dλ, and in that case it

is an eigenvalue of A. The relation between eigenvectors is u → (div u,u).
Now the eigenvalues of Dλ are the zeros of an integral function E(λ, z) called the

discriminant; the analytic dependence of Dλ on λ makes sure that E is also an analytic function
of λ, defined in C − {0,−b/ν} [16, 17]. Hence the spectrum of A is formed by the zeros of
E(λ, λ); this analytic function does not vanish identically because σ(A) �= C. Thus it has a
countable number of zeros. They do not accumulate at zero because this value does not belong
to the spectrum of A; they can only accumulate at −b/ν. By the arguments before, they are
all eigenvalues of finite multiplicity. �

Proposition 5.3. −b/ν is an accumulation point of eigenvalues.

Proof. Although a completely detailed argument needs some perturbation theorems [17], the
essence of the proof is as follows: for large eigenvalues λ, according to equations (8), (9),
any eigenvector of A tends to have the form (0, en), where en is an eigenvector of ν� within
H 1

0 (!)N with eigenvalue λn. Now, those eigenvectors form an orthonormal basis of L2(!)N

and for any r > 0, the family 1/(λn − r) is p-summable for any p > N/2. If we assume that
σ(A) is a discrete set, except for a finite number of eigenvalues, the eigenvectors of (A− r)−1

tend to be the orthonormal family (0, en), and the eigenvalues 1/(λn − r) are p-summable;
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thus (A−r)−1 would belong to the Von Neumann–Schatten class Sp [16], and therefore would
be a compact operator, contrary to the result proved in corollary 4.6. �

There is a decomposition argument which highlights the similarities and differences with
the periodic case. It is known (see e.g. [13]) that the space L2(!)N admits an orthogonal
decomposition

L2(!)N = H0(div 0, !) ⊕ ∇H 1(!)

where H0(div 0, !) is the space of square-integrable functions with null divergence (in the
sense of distributions) such that the trace u · n, which as stated before makes sense for those
functions, vanishes at the boundary. Thus every u ∈ L2(!)N may be decomposed

u = u0 + ∇φ

div u0 = 0

u0 · n|∂! = 0

φ ∈ H 1(!).

Of course φ is the solution of

�φ = div u

∂φ

∂n

∣∣∣∣
∂!

= 0.

φ is determined up to an additive constant, and ∇φ uniquely: if we impose
∫
!
φ dV = 0, φ is

also unique. u0 is merely u − ∇φ.
The equation −div u = λρ becomes �φ = −λρ that, when plugged into ν�u − b∇ρ =

λu, yields

ν�u0 − λu0 = −∇
(
ν +

b

λ
�φ + λφ

)
. (15)

The left-hand term is divergence free, and the right-hand one is a gradient. Hence this must
be the gradient of some harmonic function ψ . Thus φ must satisfy

�φ +
λ2

νλ + b
φ = − λ

νλ + b
ψ

∂φ

∂n

∣∣∣∣
∂!

= 0∫
!

φ dV = 0.

(16)

This solution will have at the boundary some tangential values ∇φ × n. Then u0 must satisfy

(ν� − λ)u0 = ∇ψ

u0 · n|∂! = 0

u0 × n|∂! = −∇φ × n|∂!.
(17)

The last condition being set such that u0 + ∇φ ∈ H 1
0 (!)N .

The trouble with this construction is that the condition div u0 = 0 does not follow from
the last equation. If, however, ψ and λ may be found such that this condition holds, λ is an
eigenvalue of A associated to u0 + ∇φ. Conversely, every eigenvalue of A corresponds to
some harmonic function ψ through this scheme.

Try ψ = 0. Then λ2/(νλ + b) must be an eigenvalue of the Laplacian for the Neumann
condition. If we denote one of these eigenvalues by µn, λ = (µn ± (µ2

nν2 − 4µnb)
1/2)/2.
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Now this λ, unless it is an eigenvalue of ν�, will yield a unique solution of the inhomogeneous
Dirichlet problem for u0. If this solution happens to be solenoidal, λ ∈ σ(A).

This seems to be rather a strange coincidence, but it always happens in the periodic case.
Then periodicity is automatically satisfied for the complex exponentials, and µn = −n2.

On the other hand, if λ is an eigenvalue of ν� for the homogeneous Dirichlet problem
with a solenoidal eigenfunction, we may always set φ = ψ = 0, u = u0, ρ = 0. Again this
is always possible for the periodic case: just take reik·x, r · k = 0, λ = −νk2. However, in
general, not every eigenspace of � will posses a solenoidal function.

With those overabundant restrictions upon the eigenvalues of A, it seems difficult to find
out much about them. We will see, however, that the nonreal ones satisfy a bound similar to
the one in the periodic problem.

Proposition 5.4. All the nonreal eigenvalues of A are located within the region{
(x, y) ∈ C : 0 � y2 � −2b

ν
x − x2

}
.

Proof. Since ∫
!

∇div u · ū dV = −
∫
!

|div u|2 dV

for an eigenfunction u of Dλ with ‖u‖ = 1, the internal product in L2(!)N ,

〈Dλu − λu,u〉 = −ν‖∇u‖2 − b

λ
‖div u‖2 − λ = 0. (18)

By taking imaginary parts,

Im

(
b ‖div u‖2

|λ|2 − 1

)
= 0. (19)

For nonreal λ, therefore, ‖div u‖2 = |λ|2/b. Now taking real parts,

−ν‖∇u‖2 − b

|λ|2 (Re λ)‖div u‖2 − Re λ = 0 (20)

which means 2Re λ = −ν‖∇u‖2. Since ‖div u‖ � ‖∇u‖,

ν|λ|2 � −2b Re λ � 2b|λ| (21)

which proves the proposition. �

Corollary 5.5. Property (d) holds for the homogeneous Dirichlet problem.

Proof. The compact region of (5.4) contacts the imaginary axis only at 0, which is not part of
the spectrum. By excluding a neighbourhood around z = 0 without eigenvalues, we find that
the spectrum lies within a half-plane Re z � −δ < 0. Hence |ez| � e−δ < 1 for all z ∈ σ(A)

and the semigroup is almost-stable.
Finally, since the coefficients of the equation are real, it is obvious that λ ∈ σ(A) if

and only if λ̄ ∈ σ(A). Note that eigenvectors associated to nonreal eigenvalues satisfy
‖∇u‖2 = −2Re λ/ν < 4b/ν2, these eigenvectors form a bounded family in H 1

0 (!)N , and
therefore a relatively compact set in L2(!)N . �
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6. Conclusions

We have studied the equations of Navier–Stokes for a viscous, barotropic compressible fluid,
linearized around a static equilibrium. Our first aim is to show that the associated linear
operator A generates a strongly continuous (or C0) semigroup T (t), that the spectrum of A
yields all the necessary information to find σ(T (t)), and that the semigroup is almost-stable.
Those conditions are essential for the spectral analysis of the linearized equations to have any
reliability as a predictive tool. We prove that all these statements are true for the periodic and
the homogeneous Dirichlet problems, in the first case by Fourier analysis and in the second
by functional analytic techniques. In addition, the spectrum of the periodic operator is found
exactly, showing that it is discrete except for a unique finite accumulation point. The same
result is proved for the homogeneous Dirichlet problem by different methods, showing that
the spectrum has qualitatively an analogous distribution.
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